"El objetivo inicial era desarrollar una microestructura mediante ingeniería en músculos artificiales para aumentar la deformación de actuación [la cantidad que el músculo puede doblarse o estirarse cuando se activa]", explica el investigador principal, Wen-Pin Shih. "Un día, vimos que la estructura celular de la cebolla y sus dimensiones eran similares a lo que habíamos estado haciendo", relata Shih, quien dirigió el estudio junto con el estudiante graduado Chien-Chun Chen y sus colegas.
La epidermis de la cebolla, la frágil piel justo debajo de la superficie de la cebolla, es una capa delgada y translúcida de células dispuestas en bloques en una retícula apretada. Shih y sus colegas pensaron que las células epidérmicas de cebolla podrían ser un candidato viable para la difícil tarea de crear un músculo más versátil que pueda expandirse o contraerse mientras se dobla. Hasta la fecha, según Shih, los músculos artificiales se pueden doblar o contraer, pero no al mismo tiempo.
La epidermis de la cebolla, la frágil piel justo debajo de la superficie de la cebolla, es una capa delgada y translúcida de células dispuestas en bloques en una retícula apretada. Shih y sus colegas pensaron que las células epidérmicas de cebolla podrían ser un candidato viable para la difícil tarea de crear un músculo más versátil que pueda expandirse o contraerse mientras se dobla. Hasta la fecha, según Shih, los músculos artificiales se pueden doblar o contraer, pero no al mismo tiempo.
Los investigadores trataron las células con ácido para eliminar la hemicelulosa, una proteína que hace que las paredes celulares sean rígidas. Luego, revistieron ambos lados de la capa de cebolla con oro. Cuando la corriente fluía a través de los electrodos de oro, las células de cebolla se doblaban y estiraban como un músculo.
"Hemos hecho intencionalmente la parte superior e inferior de electrodos de un grosor diferente para que la rigidez de la célula se vuelva asimétrica de arriba a abajo", detalla Shih. La asimetría dio a los investigadores el control sobre la respuesta del músculo: un bajo voltaje hizo que se expandiera y flexionara hacia abajo, hacia la capa inferior más gruesa, y un alto voltaje, por otro lado, provocó que las células se contrajesen y flexionaran hacia arriba, hacia la capa superior más delgada.
"Encontramos que la estructura de red de una sola capa puede generar modos de actuación únicos que no se han logrado nunca con los anteriores músculos diseñados artificialmente. "Nuestro próximo paso es reducir el voltaje empleado para la activación y la fuerza de accionamiento", afirma Shih.
Para demostrar la utilidad de su dispositivo, los investigadores combinaron dos músculos realizados con células de cebolla en un par de pinzas que utilizaron para coger una bola de algodón. En el futuro, estos expertos esperan aumentar la potencia de manejo de sus músculos artificiales.
0 comentarios
Publicar un comentario